Hoppe, J., Grande, V. P., & Schaub, M. T. (2025). Don’t be Afraid of Cell Complexes! An Introduction from an Applied Perspective (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2506.09726
Savostianov, A., Schaub, M. T., Guglielmi, N., & Tudisco, F. (2025). Efficient Sparsification of Simplicial Complexes via Local Densities of States (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2502.07558
Hoppe, J., Grande, V. P., & Schaub, M. T. (2025). Don’t be Afraid of Cell Complexes! An Introduction from an Applied Perspective. https://arxiv.org/abs/2506.09726
Cheng, M., Jansen, J., Reimer, K., Grande, V., Nagai, J. S., Li, Z., Kießling, P., Grasshoff, M., Kuppe, C., Schaub, M. T., Kramann, R., & Costa, I. G. (2024). PHLOWER - Single cell trajectory analysis using Hodge Decomposition. In bioRxiv. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2024.10.01.613179
Grande, V. P., & Schaub, M. T. (2024). Point-Level Topological Representation Learning on Point Clouds (Version 3). arXiv. https://doi.org/10.48550/ARXIV.2406.02300
Telyatnikov, L., Bernardez, G., Montagna, M., Hajij, M., Carrasco, M., Vasylenko, P., Papillon, M., Zamzmi, G., Schaub, M. T., Verhellen, J., Snopov, P., Miquel-Oliver, B., Gil-Sorribes, M., Molina, A., Guallar, V., Long, T., Suk, J., Rygiel, P., Nikitin, A., … Papamarkou, T. (2024). TopoBench: A Framework for Benchmarking Topological Deep Learning (Version 3). arXiv. https://doi.org/10.48550/ARXIV.2406.06642
Hajij, M., Zamzmi, G., Papamarkou, T., Miolane, N., Guzmán-Sáenz, A., Ramamurthy, K. N., Birdal, T., Dey, T. K., Mukherjee, S., Samaga, S. N., Livesay, N., Walters, R., Rosen, P., & Schaub, M. T. (2022). Topological Deep Learning: Going Beyond Graph Data (Version 3). arXiv. https://doi.org/10.48550/ARXIV.2206.00606
2025
Frantzen, F., & Schaub, M. T. (2025). HLSAD: Hodge Laplacian-based Simplicial Anomaly Detection. Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2, 626–636. https://doi.org/10.1145/3711896.3736998
Rompelberg, L., & Schaub, M. T. (2025). A Bayesian Perspective on Uncertainty Quantification for Estimated Graph Signals. ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5. https://doi.org/10.1109/icassp49660.2025.10889783
Papamarkou, T., Birdal, T., Bronstein, M. M., Carlsson, G. E., Curry, J., Gao, Y., Hajij, M., Kwitt, R., Lio, P., Di Lorenzo, P., Maroulas, V., Miolane, N., Nasrin, F., Natesan Ramamurthy, K., Rieck, B., Scardapane, S., Schaub, M. T., Veličković, P., Wang, B., … Zamzmi, G. (2024). Position: Topological Deep Learning is the New Frontier for Relational Learning. In R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, & F. Berkenkamp (Eds.), Proceedings of the 41st International Conference on Machine Learning (Vol. 235, pp. 39529–39555). PMLR. https://proceedings.mlr.press/v235/papamarkou24a.html
Neuhäuser, L., Scholkemper, M., Tudisco, F., & Schaub, M. T. (2024). Learning the effective order of a hypergraph dynamical system. Science Advances, 10(19). https://doi.org/10.1126/sciadv.adh4053
Grande, V. P., & Schaub, M. T. (2024). Disentangling the Spectral Properties of the Hodge Laplacian: not all small Eigenvalues are Equal. ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 9896–9900. https://doi.org/10.1109/icassp48485.2024.10446051
Grande, V. P., & Schaub, M. T. (2024). Non-Isotropic Persistent Homology: Leveraging the Metric Dependency of PH. In S. Villar & B. Chamberlain (Eds.), Proceedings of the Second Learning on Graphs Conference (Vol. 231, p. 17:1-17:19). PMLR. https://proceedings.mlr.press/v231/grande24a.html
Hoppe, J., & Schaub, M. T. (2024). Representing Edge Flows on Graphs via Sparse Cell Complexes. In S. Villar & B. Chamberlain (Eds.), Proceedings of the Second Learning on Graphs Conference (Vol. 231, p. 1:1-1:22). PMLR. https://proceedings.mlr.press/v231/hoppe24a.html
Savostianov, A., Tudisco, F., & Guglielmi, N. (2024). Cholesky-like Preconditioner for Hodge Laplacians via Heavy Collapsible Subcomplex. SIAM Journal on Matrix Analysis and Applications, 45(4), 1827–1849. https://doi.org/10.1137/23m1626396
Grande, V. P., Hoppe, J., Frantzen, F., & Schaub, M. T. (2024). Topological Trajectory Classification and Landmark Inference on Simplicial Complexes. 2024 58th Asilomar Conference on Signals, Systems, and Computers, 44–48. https://doi.org/10.1109/ieeeconf60004.2024.10942887
Epping, B., René, A., Helias, M., & Schaub, M. T. (2024). Graph Neural Networks Do Not Always Oversmooth. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, & C. Zhang (Eds.), Advances in Neural Information Processing Systems (Vol. 37, pp. 48164–48188). Curran Associates, Inc.
Frantzen, F., & Schaub, M. T. (2024). Learning From Simplicial Data Based on Random Walks and 1D Convolutions. The Twelfth International Conference on Learning Representations.
Hajij, M., Papillon, M., Frantzen, F., Agerberg, J., AlJabea, I., Ballester, R., Battiloro, C., Bernárdez, G., Birdal, T., Brent, A., Chin, P., Escalera, S., Fiorellino, S., Gardaa, O. H., Gopalakrishnan, G., Govil, D., Hoppe, J., Karri, M. R., Khouja, J., … Miolane, N. (2024). TopoX: A Suite of Python Packages for Machine Learning on Topological Domains. Journal of Machine Learning Research, 25(374), 1–8. http://jmlr.org/papers/v25/24-0110.html
Grande, V. P., & Schaub, M. T. (2023). Topological Point Cloud Clustering. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, & J. Scarlett (Eds.), Proceedings of the 40th International Conference on Machine Learning (Vol. 202, pp. 11683–11697). PMLR. https://proceedings.mlr.press/v202/grande23a.html
Roddenberry, T. M., Grande, V. P., Frantzen, F., Schaub, M. T., & Segarra, S. (2023). Signal Processing On Product Spaces. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5. https://doi.org/10.1109/icassp49357.2023.10095735
Hajij, M., Zamzmi, G., Papamarkou, T., Guzman-Saenz, Ai., Birdal, T., & Schaub, M. T. (2023). Combinatorial Complexes: Bridging the Gap Between Cell Complexes and Hypergraphs. 2023 57th Asilomar Conference on Signals, Systems, and Computers, 799–803. https://doi.org/10.1109/ieeeconf59524.2023.10477018
2022
Roddenberry, T. M., Frantzen, F., Schaub, M. T., & Segarra, S. (2022). Hodgelets: Localized Spectral Representations of Flows On Simplicial Complexes. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5922–5926. https://doi.org/10.1109/icassp43922.2022.9747203
Schaub, M. T., Seby, J.-B., Frantzen, F., Roddenberry, T. M., Zhu, Y., & Segarra, S. (2022). Signal Processing on Simplicial Complexes. In Understanding Complex Systems (pp. 301–328). Springer International Publishing. https://doi.org/10.1007/978-3-030-91374-8_12
2021
Frantzen, F., Seby, J.-B., & Schaub, M. T. (2021). Outlier Detection for Trajectories via Flow-embeddings. 2021 55th Asilomar Conference on Signals, Systems, and Computers, 1568–1572. https://doi.org/10.1109/ieeeconf53345.2021.9723128