Publications

2025

  • Frantzen, F., & Schaub, M. T. (2025). HLSAD: Hodge Laplacian-based Simplicial Anomaly Detection. Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’25), 2. https://doi.org/10.1145/3711896.3736998
    [Code]
  • Spreuer, T., Hoppe, J., & Schaub, M. T. (2025). Faster Inference of Cell Complexes from Flows via Matrix Factorization.
  • Hoppe, J., Grande, V. P., & Schaub, M. T. (2025). Don’t be Afraid of Cell Complexes! An Introduction from an Applied Perspective. https://arxiv.org/abs/2506.09726
    [PDF]
  • Rompelberg, L., & Schaub, M. T. (2025). A Bayesian Perspective on Uncertainty Quantification for Estimated Graph Signals. ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). https://doi.org/10.1109/ICASSP49660.2025.10889783
    [PDF] [arXiv]
  • Savostianov, A., Schaub, M. T., Guglielmi, N., & Tudisco, F. (2025). Efficient Sparsification of Simplicial Complexes via Local Densities of States. arXiv Preprint arXiv:2502.07558.
    [PDF]

2024

  • Hoppe, J., & Schaub, M. T. (2024). Representing Edge Flows on Graphs via Sparse Cell Complexes. In S. Villar & B. Chamberlain (Eds.), Proceedings of the Second Learning on Graphs Conference (Vol. 231, p. 1:1-1:22). PMLR. https://proceedings.mlr.press/v231/hoppe24a.html
  • Epping, B., René, A., Helias, M., & Schaub, M. T. (2024). Graph Neural Networks Do Not Always Oversmooth. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, & C. Zhang (Eds.), Advances in Neural Information Processing Systems (Vol. 37, pp. 48164–48188). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2024/file/5623c35f3ab5e2c72aeb3abce27dc28f-Paper-Conference.pdf
    [PDF] [Git]
  • Frantzen, F., & Schaub, M. T. (2024). Learning From Simplicial Data Based on Random Walks and 1D Convolutions. The Twelfth International Conference on Learning Representations. https://openreview.net/forum?id=OsGUnYOzii
    [PDF] [Code]
  • Hajij, M., Papillon, M., Frantzen, F., Agerberg, J., AlJabea, I., Ballester, R., Battiloro, C., Bernárdez, G., Birdal, T., Brent, A., Chin, P., Escalera, S., Fiorellino, S., Gardaa, O. H., Gopalakrishnan, G., Govil, D., Hoppe, J., Karri, M. R., Khouja, J., … Miolane, N. (2024). TopoX: A Suite of Python Packages for Machine Learning on Topological Domains. Journal of Machine Learning Research, 25(374), 1–8. http://jmlr.org/papers/v25/24-0110.html
    [PDF] [GitHub]
  • Savostianov, A., Tudisco, F., & Guglielmi, N. (2024). Cholesky-like Preconditioner for Hodge Laplacians via Heavy Collapsible Subcomplex. SIAM Journal on Matrix Analysis and Applications, 45(4), 1827–1849. https://doi.org/10.1137/23M1626396
    [PDF] [Github]

2023

  • Roddenberry, T. M., Grande, V. P., Frantzen, F., Schaub, M. T., & Segarra, S. (2023). Signal Processing On Product Spaces. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5. https://doi.org/10.1109/ICASSP49357.2023.10095735

2022

  • Roddenberry, T. M., Frantzen, F., Schaub, M. T., & Segarra, S. (2022). Hodgelets: Localized Spectral Representations of Flows On Simplicial Complexes. 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5922–5926. https://doi.org/10.1109/ICASSP43922.2022.9747203
    [Code]
  • Schaub, M. T., Seby, J.-B., Frantzen, F., Roddenberry, T. M., Zhu, Y., & Segarra, S. (2022). Signal Processing on Simplicial Complexes. In F. Battiston & G. Petri (Eds.), Higher-Order Systems (pp. 301–328). Springer International Publishing. https://doi.org/10.1007/978-3-030-91374-8_12

2021